Klamath River (Link River to Seiad Valley) Master Sediment Budget | Master Seamle | | Reach Description | | | Input Sum | nmary | | | Tribut | ary/Watersh | ed | | | | Land | slides | Other Sources | el | | | Transport | Deficit/Surplus | | | | | |---------------|---|--------------------------------------|---|------------------------|---|--------------------------------------|---|----------------|------------------------|--------------------|---------------|----------------|-------------------------------------|---|--|---|-------------------------------|----------------------------------|-----------------------------|--|--|---|--|--|--|---| | | | Keach Description | | | | | | | IIIbut | ii y/ vv atei siii | eu | | | | Land | silues | Other Sources | | | | Transport | Delicitourpius | 5 | | | | | Reach | Subreach | Upstream Extent | Downstream Extent | River Mile | Input Source | Tributary Name | Relation to
Mainstem
Looking DS
(river right (R),
river left (L)) | | Watershed
Area (m²) | | | | Connectivity
Factor ¹ | Sediment
Yield ²
(tons/mi2/yr) | Volume of
Slide (yds ³) | Tons of slide
(using bulk
density of
1.485
tons/yds³) | Streambanks
and floodplair | Total Load Delivery (tons/ year) | Bedload
Delivery | Cummulative Bed Material Load + Bedload Delivery by Reach (tons/ year) | Theoretical
Average Annual
Transport
Capacity ³
(tons/yr) | Potential
Average Annual
Deficit or
Surplus by Cell
(tons/yr) | Potential Average Annual Deficit or Surplus by Reach or Subreach (tons/yr) | Actual Average
Annual Deficit
or Surplus by
Reach or
Subreach
(tons/yr) | Cumulative
Deficit to
Downstream
Reach
(tons/year) | Notes | | Link | Link | Link River Dam | Keno Dam | 254 5 252 | Reach Watershed Area ⁴ | | | 70400 | 284889000 | 205 | 110.00 | ark Diagonno | 0.01 | 101.7 | | | | 244 | 169 | | | | | | | | | Reach Total | LITIK | Link River Dam | Keno Dam | 254.5-253 | Reach Watershed Area | | | 70400 | 284889000 | 285 | 110.00 | arly Disconnec | 0.01 | 191.7 | | | | 211
211 | 169 | | 250000 | -249831 | -249831 | -169 | 0 | Material historically trapped in Lake
Euwana | | Keno | | | | | Reach Watershed Area ⁵ | | | | | | | | | | | | | | | | 200000 | 210001 | 2.0001 | | | - OTTAIN | | Reach Total | Keno
JC Boyle res. | Keno dam
J.C. Boyle res. | J.B. Boyle res.
J.C. Boyle dam | 233.3-229
229-224.6 | | | | 50611
51788 | 204810483
209573517 | 205
210 | 79
81 | 1 | 0.25
0.25 | 191.7
191.7 | | | | 3790
3878
7668 | 3032
3102
6134 | 3032
6134 | 900000
0
900000 | -896968
3102 | -893866 | -6134 | -6134 | Deficit to J.C. Boyle Reach | | J.C. Boyle | | J.C. Boyle dam | Conce dom | | Tributaries Connected to
the Mainstem ⁹ | JC Boyle bypass
JC Boyle bypass | J.C. Boyle dam | Copco dam J.C. Boyle Peaking J.C. Boyle Peaking | 224.7
224.6 | the Mainstern | unnamed trib a
unnamed trib b | R
R | 85
2100 | 344934
8498236 | 0
8 | 0.13
3.28 | m
m | 0.5
0.5 | 191.7
191.7 | | | | 13
315 | 10
252 | 10
262 | 260000 | -259990
-259738 | | | | | | | JC Boyle bypass
JC Boyle bypass | J.C. Boyle dam | J.C. Boyle Peaking
J.C. Boyle Peaking | 224.5
224.3 | | unnamed trib c
unnamed trib d | R | 2707
4357 | 10955700
17631205 | 11
18 | 4.23
6.81 | m
m | 0.5
0.5 | 191.7
191.7 | | | | 405
652 | 324
522 | 586
1108 | | -259414
-258892 | | | | | | | JC Boyle bypass | J.C. Boyle dam | J.C. Boyle Peaking | 222.3 | | unnamed trib e | Ĺ | 1283 | 5190191
1326147 | 5 | 2.00 | h | 1 | 191.7 | | | | 384
98 | 307
79 | 1415
1494 | | -258585
-258506 | | | | | | Cubtotal | JC Boyle bypass
JC Boyle bypass | | J.C. Boyle Peaking
J.C. Boyle Peaking | 222
221.2 | | unnamed trib f
unnamed trib g | L | 328
657 | 2659668 | 3 | 0.51
1.03 | h
h | 1 | 191.7
191.7 | | | | 197 | 157 | 1651 | | -258349 | 259240 | | | | | Subtotal | | | | | | P.H. Canal | | | | | | | | | | | | 2064 | 1651 | | | | -258349 | | | | | | JC Boyle bypass | J.C. Boyle dam | J.C. Boyle Peaking | 222.6 | Emergency spillway ⁶ Erosion opposite of | Spillway | R | | | | | | | | 68742 | 102082 | | 2552 | 2042 | 2042 | 260000 | -257958 | | | | | | | JC Boyle bypass
JC Boyle bypass | | J.C. Boyle Peaking
J.C. Boyle Peaking | 222.6
223.2 | blowout ⁶
Emergency spillway ⁶ | Sidecast erosion
Sidecast erosion | L
L | | | | | | | | 10207
1514 | 15157
2249 | | 379
56 | 303
45 | 2345
2390 | | -257655
-257610 | | | | | | | JC Boyle bypass | • | J.C. Boyle Peaking | 221.5 | Big Bend Landslide 1 | Big Bend
Landslide 1 | R | | | | | | | | 376 | 558 | | 11 | 9 | 2399 | | -257601 | | | | | | | JC Boyle bypass | J.C. Boyle dam | J.C. Boyle Peaking | 221.4 | Big Bend Landslide 2 | Big Bend
Landslide 2 | R | | | | | | | | 1510 | 2242 | | 49 | 39 | 2438 | | -257562 | | | | | | Subtotal | JC Boyle bypass | J.C. Boyle dam | J.C. Boyle Peaking | 221 | Big Bend Landslide 3 | Big Bend
Landslide 3 | R | | | | | | | | 590
82939.1705 | 876
123165 | _ | 19
3066 | 15
2453 | 2453 | | -257547 | -257547 | | | | | oubtou. | | | | | | | | | | | | | | | 02000.1700 | 120100 | | 0000 | 2100 | | | | 201011 | | | | | | J.C. Boyle USGS | h J.C. Boyle Peaking | LC Roylo Gorgo | 220.3 | Tributaries Connected to
the Mainstem ⁹ | unnamed trib h | R | 2078 | 8407920 | | 3.25 | m | 0.5 | 191.7 | | | | 311 | 249 | 249 | 140000 | -139751 | | | | | | | J.C. Boyle USGS | h J.C. Boyle Peaking | | 219.8 | are mainstern | unnamed trib i | R | 569 | 2303956 | 2 | 0.89 |
h | 1 | 191.7 | | | | 171 | 136 | 385 | 140000 | -139615 | | | | | | | J.C. Boyle USGS | h J.C. Boyle Peaking | | 219 | | unnamed trib j | R | 415 | 1678224 | 2 | 0.65 | m | 0.5 | 191.7 | | | | 62 | 50 | 435 | | -139565 | | | | | | | J.C. Boyle USGS | h J.C. Boyle Peaking | | 218.6 | | hayden cr
(unnamed trib k) | R | 879 | 3555900 | 4 | 1.37 | h | 1 | 191.7 | | | | 263 | 211 | 646 | | -139354 | | | | | | | J.C. Boyle USGS | h J.C. Boyle Peaking | | 218.5 | | unnamed trib I | L | 127 | 512826 | 1 | 0.20 | h | 1 | 191.7 | | | | 38 | 30 | 676 | | -139324 | | | | | | | J.C. Boyle USGS | h J.C. Boyle Peaking | | 218.4 | | unnamed trib m | R | 186 | 754314 | 1 | 0.29 | m | 0.5 | 191.7 | | | | 28 | 22 | 698 | | -139302 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 218.3 | | unnamed trib n | R | 19 | 78300 | 0 | 0.03 | h | 1 | 191.7 | | | | 6 | 5 | 703 | | -139297 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 218.2 | | unnamed trib o | L | 1071 | 4335351 | 4 | 1.67 | h | 1 | 191.7 | | | | 321 | 257 | 960 | | -139040 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 217.5 | | unnamed trib p | L | 204 | 825300 | 1 | 0.32 | h | 1 | 191.7 | | | | 61 | 49 | 1008 | | -138992 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 217.2 | | unnamed trib q | R | 1236 | 5000554 | 5 | 1.93 | m | 0.5 | 191.7 | | | | 185 | 148 | 1157 | | -138843 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 217.1 | | unnamed trib r | R | 345 | 1397700 | 1 | 0.54 | h | 1 | 191.7 | | | | 103 | 83 | 1239 | | -138761 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 216.9 | | unnamed trib s | L | 78 | 317299 | 0 | 0.12 | m | 0.5 | 191.7 | | | | 12 | 9 | 1249 | | -138751 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 216.7 | | unnamed trib t | L | 24 | 97800 | 0 | 0.04 | h | 1 | 191.7 | | | | 7 | 6 | 1254 | | -138746 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 216.6 | | unnamed trib u | L | 6 | 25200 | 0 | 0.01 | h | 1 | 191.7 | | | | 2 | 1 | 1256 | | -138744 | | | | | | | J.C. Boyle USGS
Gauge/Frain Ranci
J.C. Boyle USGS | h J.C. Boyle Peaking | J.C. Boyle Gorge | 216.5 | | unnamed trib v | R | 132 | 533712 | 1 | 0.21 | m | 0.5 | 191.7 | | | | 20 | 16 | 1272 | | -138728 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 216.3 | | unnamed trib
topsy | L | 5762 | 23319684 | 23 | 9.00 | 1 | 0.25 | 191.7 | | | | 432 | 345 | 1617 | | -138383 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 216 | | unnamed trib w | R | 173 | 698888 | 1 | 0.27 | h | 1 | 191.7 | | | | 52 | 41 | 1658 | | -138342 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 215.4 | | bear flat cr | R | 566 | 2289026 | 2 | 0.88 | m | 0.5 | 191.7 | | | | 85 | 68 | 1726 | | -138274 | | | | | | | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 214.9 | | unnamed trib x | L | 554 | 2241883 | 2 | 0.87 | m | 0.5 | 191.7 | | | | 83 | 66 | 1793 | | -138207 | | | | | | Subtotal | | h J.C. Boyle Peaking | J.C. Boyle Gorge | 214.6 | | unnamed trib y | R | 47 | 189900 | 0 | 0.07 | m | 0.5 | 191.7 | | | | 7
2248 | 6
1798 | 1798 | | -138202 | -138202 | | | | | | | | | | Tributaries Connected to | J.C. Boyle Gorge
J.C. Boyle Gorge | J.C. Boyle Shovel Cr
J.C. Boyle Shovel Cr | 214.4
213.8 | the Mainstem ⁹ | unnamed trib z
rock cr | L
L | 24
9948 | 98100
40258165 | 0
40 | 0.04
15.54 | m
m | 0.5
0.5 | 191.7
191.7 | | | | 4
1490 | 3
1192 | 3
1195 | 210000 | -209997
-208805 | | | | | | | J.C. Boyle Gorge | J.C. Boyle Gorge
J.C. Boyle Gorge | J.C. Boyle Shovel Cr
J.C. Boyle Shovel Cr | 213
212.5 | | unnamed trib aa
unnamed trib bb | L | 129
516 | 520561
2087016 | 1 2 | 0.20
0.81 | h | 1
0.25 | 191.7
191.7 | | | | 39
39 | 31
31 | 1226
1257 | | -208774
-208743 | | | | | | | J.C. Boyle Gorge | J.C. Boyle Gorge | J.C. Boyle Shovel Cr | 212.4 | | unnamed trib cc | R | 620 | 2511074 | 3 | 0.97 | m | 0.25 | 191.7 | | | | 93 | 74 | 1331 | | -208669 | | | | | | | | J.C. Boyle Gorge
J.C. Boyle Gorge | J.C. Boyle Shovel Cr
J.C. Boyle Shovel Cr | 211.9
211.8 | | unnamed trib dd
unnamed trib ee | L
L | 66
51 | 266119
204487 | 0 | 0.10
0.08 | h
h | 1
1 | 191.7
191.7 | | | | 20
15 | 16
12 | 1347
1359 | | -208653
-208641 | | | | | | | J.C. Boyle Gorge | J.C. Boyle Gorge | J.C. Boyle Shovel Cr | 210.6 | | unnamed trib ff | Ī. | 1842 | 7452938 | 7 | 2.88 | h | 1 | 191.7 | | | | 552 | 441 | 1800 | | -208200 | | | | | | | J.C. Boyle Gorge | J.C. Boyle Gorge
J.C. Boyle Gorge | J.C. Boyle Shovel Cr
J.C. Boyle Shovel Cr | 210.2
209.9 | | unnamed trib ff2
unnamed trib gg | L
R | 229
2088 | 925615
8448908 | 1
8 | 0.36
3.26 | n
h | 1
1 | 191.7
191.7 | | | | 69
625 | 55
500 | 1855
2355 | | -208145
-207645 | | | | | | Subtotal | | J.C. Boyle Gorge | J.C. Boyle Shovel Cr | 209.2 | | hayden cr | R | 17786 | 71976105 | 72 | 27.79 | 1 | 0.25 | 191.7 | | | | 1332
4276 | 1065
3421 | 3421 | | -206579 | -206579 | | | | | Jubiolai | | | | | | | | | | | | | | | | | | 7210 | 0421 | | | | 200013 | | | | ## Klamath River (Link River to Seiad Valley) Master Sediment Budget | Master Sediment Budget | | | Input Sum | mary |--------------------------------------|--------------------------------------|-----------------------------|---------------------------------|-------------------------|---|-----------------------------------|---|--------------|------------------------|-------------|----------------------|----------|-------------------------------------|---|--|--|--|----------------|---|---|--|---|---|--|--|----------------------------------| | | R | leach Description | | | | | | - | Tributa | ary/Watersh | ed | | | | Land | slides | Other Source | es | | | Transport | Deficit/Surplus | | | | | | Reach | Subreach | Upstream Extent | Downstream Extent | River Mile | Input Source | Tributary Name | Relation to
Mainstem
Looking DS
(river right (R),
river left (L)) | | Watershed
Area (m²) | | | | Connectivity
Factor ¹ | Sediment
Yield ²
(tons/mi2/vr) | Volume of
Slide (yds ³) | Tons of slide
(using bulk
density of
1.485
tons/yds ³) | Streambank
and floodplai
storage | | Bed Material
Load +
Bedload
Delivery
(tons/ year) | Cummulative
Bed Material
Load + Bedload
Delivery by
Reach (tons/
year) | Theoretical
Average Annual
Transport
Capacity ³
(tons/yr) | Potential
Average Annual
Deficit or
Surplus by Cell
(tons/yr) | Potential Average Annua Deficit or Surplus by Reach or Subreach (tons/yr) | Actual Average
Annual Deficit
or Surplus by
Reach or
Subreach
(tons/yr) | Cumulative | Notes | | | J.C. Boyle Shovel | | | | Tributaries Connected to | | R | | | 2 | | | 0.25 | 191.7 | | | | 34 | 27 | 27 | | -199973 | | | | | | | Creek J.C. Boyle Shovel | J.C. Boyle Shovel Cr | | 207.4 | the Mainstem ⁹ | unnamed trib hh | | 450 | 1820012 | 7 | 0.70 | | | | | | | | | | 200000 | | | | | | | | Creek J.C. Boyle Shovel | J.C. Boyle Shovel Cr | | 207.3 | | unnamed trib ii | L | 1721 | 6965435 | • | 2.69 | 1 | 0.25 | 191.7 | | | | 129 | 103 | 130 | | -199870 | | | | | | | Creek J.C. Boyle Shovel | J.C. Boyle Shovel Cr | | 207.2 | | unnamed trib jj | L | 466 | 1885500 | 2 | 0.73 | | 0.25 | 191.7 | | | | 35 | 28 | 158 | | -199842 | | | | | | | Creek
J.C. Boyle Shovel | J.C. Boyle Shovel Cr | | 206.1 | | shovel cr | L
- | 32749 | 132531368 | 133 | 51.17 | | 0.25 | 191.7 | | | | 2452 | 1962 | 2120 | | -197880 | | | | | | | Creek
J.C. Boyle Shovel | J.C. Boyle Shovel Cr | | 205.8 | | eagle cr | R | 4584 | 18549835 | 19 | 7.16 | ı | 0.25 | 191.7 | | | | 343 | 275 | 2394 | | -197606 | | | | | | | Creek J.C. Boyle Shovel | J.C. Boyle Shovel Cr | | 205.7 | | unnamed trib II | L | 579 | 2342700 | 2 | 0.90 | m | 0.5 | 191.7 | | | | 87 | 69 | 2464 | | -197536 | | | | | | | Creek
J.C. Boyle Shovel | J.C. Boyle Shovel Cr | | 205.3 | | unnamed trib mm | | 177 | 714898 | 1 | 0.28 | | 0.25 | 191.7 | | | | 13 | 11 | 2474 | | -197526 | | | | | | | Creek
J.C. Boyle Shovel | J.C. Boyle Shovel Cr | | 204.2 | | unnamed trib nn | | 969 | 3919867 | 4 | 1.51 | | 0.25 | 191.7 | | | | 73
50 | 58
40 | 2532 | | -197468 | | | | | | Subtotal | Creek | J.C. Boyle Shovel Cr | Copco res. | 204.1 | | unnamed trib oo | L | 661 | 2676820 | 3 | 1.03 | ı | 0.25 | 191.7 | | | | 3215 | 2572 | 2572 | | -197428 | -197428 | | | | | | | | | | Tributaries Connected to | Copco res.
Copco res. | Copco res.
Copco res. | Copco dam
Copco dam | 203.3
203.2 | the Mainstem ⁹ | unnamed trib a
long prairie cr | L
R | 219
39242 | 885084
158805725 | 1
159 | 0.34
61.31 | m
I | 0.5
0.25 | 191.7
191.7 | | | | 33
2939 | 26
2351 | 26
2377 | 0 | 26
2377 | | | | | | | Copco res.
Copco res. | Copco res.
Copco res. | Copco dam
Copco dam | 203.1
202.7 | | unnamed trib b
milk cr | R
L | 55
596 | 221676
2410176 | 0
2 | 0.09
0.93 | l
m | 0.25
0.5 | 191.7
191.7 | | | | 4
89 | 3
71 | 2380
2452 | | 2380
2452 | | | | | | | Copco res.
Copco res. | Copco res.
Copco res. | Copco dam
Copco dam | 202.4
201.9 | | snackenburg cr
spannaus gulch | L
R | 1822
557 | 7373700
2253600 | 7
2 | 2.85
0.87 | l
m | 0.25
0.5 | 191.7
191.7 | | | | 136
83 | 109
67 | 2561
2628 | | 2561
2628 | | | | | | | Copco res.
Copco res. | Copco res.
Copco res. | Copco dam
Copco dam | 201.8
201.2 | | parks canyon
unnamed trib c | L
R | 647
74 | 2618100
298482 | 3
0 | 1.01
0.12 | l
m | 0.25
0.5 | 191.7
191.7 | | | | 48
11 | 39
9 | 2666
2675 | | 2666
2675 | | | | | | | Copco res.
Copco res. | Copco res.
Copco res. | Copco dam
Copco dam | 201.2
200.9 | | unnamed trib d
unnamed trib e | R
R | 345
97 | 1396715
391725 | 1
0 | 0.54
0.15 | m
m | 0.5
0.5 | 191.7
191.7 | | | | 52
14 | 41
12 | 2716
2728 | | 2716
2728 | | | | | | | Copco res.
Copco res. | Copco res.
Copco res. | Copco dam
Copco dam | 200.9
200.5 | | deer cr
raymond gulch | L
R | 4473
1625 | 18100800
6574500 | 18
7 | 6.99
2.54 | l
m | 0.25
0.5 | 191.7
191.7 | | | | 335
243 | 268
195 | 2996
3191 | | 2996
3191 | | | | | | | Copco res.
Copco res. | Copco res.
Copco res. | Copco dam
Copco dam | 200.4
199.9 | | unnamed trib g
unnamed trib h | L
R | 82
70 | 333334
282171 | 0 | 0.13
0.11 | I
I | 0.25
0.25 | 191.7
191.7 | | | | 6 | 5 | 3196
3200 | | 3196
3200 | | | | | | | Copco res.
Copco res. | Copco res.
Copco res. | Copco dam
Copco dam | 199.7
199.6 | | beaver cr
unnamed trib i | R | 3563
108 | 14420700
436500 | 14
0 | 5.57
0.17 | i
m | 0.25
0.5 | 191.7
191.7 | | | | 267
16 | 213
13 | 3413
3426 | | 3413
3426 | | | | | | | Copco res.
Copco res. | Copco res.
Copco res. | Copco dam
Copco dam | 199.6
199.6 | | unnamed trib j
unnamed trib k | L | 141
182 | 568865
735300 | 1 | 0.22
0.28 | Ï | 0.25
0.25 | 191.7
191.7 | | | | 11
14 | 8
11 | 3435
3445 | | 3435
3445 | | | | | | | Copco res.
Copco res. | Copco res.
Copco res. | Copco dam
Copco dam | 199.5
199.4 | | unnamed trib I
unnamed trib m | R | 14
92 | 58163
373500 | 0 | 0.02
0.14 | m
m | 0.5
0.5 | 191.7
191.7 | | | | 2 | 2
11 | 3447
3458 | | 3447
3458 | | | | | | | Copco res. | Copco res. Copco res. | Copco dam
Copco dam | 199.4
199.2
199.1 | | unnamed trib n
unnamed trib o | R | 36
719 | 144000
2909542 | 0 | 0.14
0.06
1.12 | h
I | 0.5
1
0.25 | 191.7
191.7
191.7 | | | | 11
11
54 | 9 | 3467
3510 | | 3467
3510 | | | | | | Subtotal | Copco res.
Copco res. | Copco res. | Copco dam | 198.9 | | unnamed trib p | L | 196 | 793800 | 1 | 0.31 | i | 0.25 | 191.7 | | | | 15
4402 | 12
3522 | 3522 | | 3522 | 3522 | | | | | Subreach Subtotals | | | | | | | | | | | | | | | | | | 4402 | 3022 | | | | 3322 | | | | | | | LC Boyle dam | LC Route Beaking | | Tributaries Connected to
the Mainstem ⁹ | | | | | | | | | | | | | 5131 | 4404 | 4104 | 260000 | | 255906 | | | | | J.C. Boyle Bypass
J.C. Boyle USGS | | J.C. Boyle dam | J.C. Boyle Peaking | | Tributaries Connected to | | | | | | | | | | | | | | 4104 | | 260000 | | -255896 | | | | | Gauge/Frain Ranch | | | J.C. Boyle Gorge | | the Mainstem ⁹ Tributaries Connected to | | | | | | | | | | | | | 2248 | 1798 | 5903 | 140000 | | -138202 | | | | | J.C. Boyle Gorge | | Copco dam | J.C. Boyle Shovel Cr | | the Mainstem ⁹ Tributaries Connected to | | | | | | | | | | | | | 4276 | 3421 | 9323 | 210000 | | -206579 | | | | | J.C. Boyle Shovel Creel | (| Copco dam | Copco res. | | the Mainstem ⁹ I ributaries Connected to | | | | | | | | | | | | | 3215 | 2572 | 11895 | 200000 | | -197428 | | | | | Cocpo Reservoir
Reach Total | | Copco res. | Copco dam | | the Mainstem ⁹ | | | | | | | | | | | | | 4402
19271 | 3522
15417 | 15417 | 0
810000 | | 3522
-794583 | -15417 | -21551 | Deficit to Copco Reach | | | | | | | Tributaries connected to | Сорсо | Copco bypass
Iron Gate res. | Copco Dam
Iron Gate res. | Iron Gate res.
Iron Gate dam | 197.5
194.2 | the mainstem | unnamed trib a
Jenny Cr. | L
R | 134329 | 543594111 | 544 | 0.22
209.89 | m
I | 0.5
1 | 166.1
22.8 | | | | 18
4785 | 15
3828 | 15
3843 | 480000 | -479985
-476157 | | | | | | | Iron Gate res. | Iron Gate res. | Iron Gate dam | 192.3 | | Camp and Dutch
Crks | R | 12621 | 51072828 | 51 | 19.72 | 1 | 1 | 166.1 | | | | 3275 | 2620 | 6463 | | -473537 | | | | | | Subtotal | Iron Gate res. | Iron Gate res. | Iron Gate dam | 179.4 | | Scotch Cr. | R | 11482 | 46462806 | 46 | 17.94 | ı | 1 | 219.8 | | | | 3943
12022 | 3155
9618 | 9618 | | -470382 | -470382 | | | | | | | | | | Remaining watershed are | a | Iron Gate res. | Iron Gate res. | Iron Gate dam | | of the Copco Project
Reach ⁷ | Iron Gate Tribs. | Both | 17882 | 72361806 | 72 | 27.94 | 1 | 0.25 | 197.7 | | | | 1381 | 1105 | 1105 | 0 | 1105 | | | | | | Reach Total | | | | | | | | | | | 275.49 | | | | | | | 13403 | 10723 | 10723 | 480000 | | -469277 | -10723 | -32274 | Deficit to DS Iron Gate Reach | | Iron Gate | Iron Gate Dam to
Cottonwood Creek | Iron Gate dam | Cottonwood Cr | 189.6 | Tributaries connected to
the mainstem ⁸ | Bogas Cr. | L | 34522 | 34522 | 140 | 53.94 | NA | NA | 191.7 | | | | 10340 | 8272 | 8272 | 3000 | 5272 | | | | | | | Iron Gate Dam to
Cottonwood Creek | | Cottonwood Cr | 185.0 | the mainstern | Willow Cr. | L | 37540 | 37540 | 152 | 58.66 | NA | NA NA | 191.7 | | | | 11244 | 8995 | 17268 | 3000 | 14268 | | | | | | Subtotal | | on Gate dam | SOLIOI WOOL OI | 103.0 | | | _ | 37340 | 37340 | 132 | 30.00 | 110 | IVA | 131.7 | | | | 21585 | 17268 | - 17200 | | 14200 | 14268 | 14268 | -18006 | Deficit reduced by reach surplus | | | Cottonwood Creek | Cottonwood Cr | Scott Pivor | 100.4 | Tributaries connected to | Cottonwood Cr | P | 62542 | 62F42 | 257 | 00.20 | NA | NA | 450 | | | | 44678 | 44670 | 44679 | 10000 | 25570 | | | | | | | to Scott River
Cottonwood Creek | Cottonwood Cr | Scott River | 182.1 | the mainstem | Cottonwood Cr. | R | 63542 | 63543 | 257 | 99.29 | NA
NA | NA
NA | 450 | | | | | 44678 | 44678 | 19000 | 25678 | | | | | | | to Scott River
Cottonwood Creek | Cottonwood Cr | Scott River | 176.7 | | Shasta R. | L | 507422 | 507424 | 2053 | 792.85 | NA
NA | NA
NA | 450 | | | | 356783 | 356783 | 401461 | | 382461 | | | | | | | to Scott River
Cottonwood Creek | Cottonwood Cr | Scott River | 169.7 | | Lime Gulch | R | 23639 | 23639 | 96 | 36.94 | NA | NA
NA | 450 | | | | 16621 | 16621 | 418082 | | 399082 | | | | | | | to Scott River
Cottonwood Creek | Cottonwood Cr | Scott River | 167.0 | | Mainstream Tribs. | Both | 163620 | 163621 | 662 | 255.66 | NA | NA
 | 450 | | | | 115046 | 115046 | 533128 | | 514128 | | | | | | | to Scott River
Cottonwood Creek | Cottonwood Cr | Scott River | 164.4 | | Vesa Cr. | L | 11331 | 11331 | 46 | 17.70 | NA | NA | 450 | | | | 7967 | 7967 | 541095 | | 522095 | | | | | | | to Scott River | Cottonwood Cr | Scott River | 161.0 | | Beaver Cr. | R | 69660 | 69660 | 282 | 108.84 | NA | NA | 450 | | | | 48980 | 48980 | 590075 | | 571075 | | | | | ## Klamath River (Link River to Seiad Valley) Master Sediment Budget | | | | | | Input Sum | ımary |---|--|------------------|-------------------------------|------------|--|-------------------|---|------------------------------|---------|--------------|----------------------|---------------------------|-------------------------------------|---|-----------|---|--|--|---|---|--|---|--|--|--|---| | | Reach Description | | | | | | | | Tributa | ary/Watershe | ed | | | | Landsli | ides | Other Sources | 5 | | | Transport | Deficit/Surplus | | | | | | Reach | Subreach
Cottonwood Creek | Upstream Extent | Downstream Extent | River Mile | Input Source | Tributary Name | Relation to
Mainstem
Looking DS
(river right (R),
river left (L)) | Watershed
Area
(acres) | | | Watershed Area (mi²) | Connectivity
(h, m, l) | Connectivity
Factor ¹ | Sediment
Yield ²
(tons/mi2/yr) | Volume of | ons of slide
(using bulk
density of
1.485
tons/yds ³) | Streambanks
and floodplain
storage | Total Load
Delivery
(tons/ year) | Bed Material
Load +
Bedload
Delivery
(tons/ year) | Cummulative
Bed Material
Load + Bedload
Delivery by
Reach (tons/
year) | Theoretical
Average Annual
Transport
Capacity ³
(tons/yr) | Potential
Average Annual
Deficit or
Surplus by Cell
(tons/yr) | Potential
Average Annual
Deficit or
Surplus by
Reach or
Subreach
(tons/yr) | Actual Average
Annual Deficit
or Surplus by
Reach or
Subreach
(tons/yr) | Cumulative
Deficit to
Downstream
Reach
(tons/year) | Notes | | Subtotal | to Scott River | Cottonwood Cr | Scott River | 147.3 | | Horse Cr. | R | 38952 | 38952 | 158 | 60.86 | NA | NA | 450 | | | | 27388
617463 | 27388
617463 | 617463 | | 598463 | 598463 | 598463 | 580457 | Deficit overcome by reach surplus | | | Downstream of
Scott River (include
Seiad Valley) | s
Scott River | Downstream of Seiad
Valley | 143.0 | Tributaries connected to the mainstem | Scott R. | L | 520609 | 520612 | 2107 | 813.46 | NA | NA | 450 | | | | 366055 | 366055 | 366055 | 1000 | 365055 | | | | | | | Downstream of
Scott River (include
Seiad Valley) | s
Scott River | Downstream of Seiad
Valley | 130.3 | Tributaries connected to the mainstem | Upper Grinder Cr. | L | 27628 | 27628 | 112 | 43.17 | NA | NA | 450 | | | | 19426 | 19426 | 385481 | | 384481 | | | | | | | Downstream of
Scott River (include
Seiad Valley) | s
Scott River | Downstream of Seiad
Valley | 130.0 | Tributaries connected to the mainstern | Seiad Cr. | R | 18491 | 18491 | 75 | 28.89 | NA | NA | 450 | | | | 13002 | 13002 | 398483 | | 397483 | | ı | | Surplus from upstream reach | | Subtotal Subreach Subtotals | | | | | | | | | | | | | | | | | | 398483 | 398483 | | | | 397483 | 397483 | | would not move downstream to this
each | | Iron Gate Dam to
Cottonwood Creek | | Iron Gate dam | Cottonwood Cr | | | | | | | | | | | | | | | 21585 | 17268 | 17268 | 3000 | | | 14268 | 14268 | Surplus from upstream reach
would not move downstream to this
each
Surplus from upstream reach | | Cottonwood Creek to
Scott River
Downstream of Scott | | Cottonwood Cr | Scott River | | | | | | | | | | | | | | | 617463 | 617463 | 634731 | 19000 | | | 598463 | 598463 | would not move downstream to this
each
Surplus from upstream reach | | River (includes Seiad
Valley)
Reach Total | | Scott River | Downstream of Seiad
Valley | | | | | | | | | | | | | | | 398483
1037531 | 398483
1033214 | 1033214 | 1000
23000 | | 1010214 | 397483 | | would not move downstream to this each | Note¹ | Connectivity Factors | | | | | | | | | | | |----------------------|--------|------|------------------------|--|--|--|--|--|--|--| | Reach | Medium | Low | Nearly
Disconnected | | | | | | | | | Link | 0.5 | 0.25 | 0.01 | | | | | | | | | JC Boyle | 0.5 | 0.25 | | | | | | | | | | Conco | 0.5 | 0.25 | | | | | | | | | ote² Value from sed_yield.xls spreadsheet Value from AveAnnualTransportCapcity spreadsheet tab Only two tributaries were identified in this reach and sediment delivered to the mainstem was limited by depositional zones either near the mainstem or in upland meadows. The sediment inputs to this reach were estimated by multiplying a low connenctivity rate by the watershed area. The watershed area for the Link reach was derived by taking the difference of the watershed area at the Link River Gauge and the Keno Gauge published by the USGS. The connectivity factor of 0.01 was based on professional judgment of the GSG and comparison with the measured tributary delta deposits. Historically, a large percentage of the bedload in the Klamath River would have been deposited in Lake Evauna. Therefore, the sediment input value presented for the Link River Project Reach most likely overestimates the contribution of bedload sediment to the channel. Although 17 tributaries were identified as being directly connected to the mainstem, a low (0.25) connectivity factor was applied the watershed area of the reach. The watershed area was determined by taking the difference between the watershed areas at the Keno gauge and the JC Boyle gauge. The connectivity factor was applied to the watershed area instead of the individual tributaries because the GIS algorithm used to determine watershed boundaries in other reaches was unable to accurately delineate the tributary watershed boundaries from the DEM. Many of the tributaries have flat meadows that limit sediment delivery to the mainstem. Subreach watershed areas and sediment yields were calculated as a percentage of the length of the reservoir by the total reach length. Most likely this method will overestimate the production of sediment from surfaces that are not connected to the mainstem by a channel. te⁶ Assuming slide started in the 1960s Scotch, Camp, Dutch, and Jenny creeks and an unnamed "Tributary a" (UN Trib a) cover 90 percent of the watershed area of the Copco Project Reach. Sediment inputs were calculated by multiplying the watershed area of each creek by a connectivity factor derived from tributary delta surveys as described above. The sediment input from the remaining 10 percent of the watershed area was calculated by applying a low connectivity factor (0.25) to the watershed area. Applying the connectivity to watershed areas as that are not directly connected to mainstem by a channel most likely overestimates the content of the connectivity factor (0.25) to the watershed area. For the reach from Iron Gate Dam to Seiad Valley, two different tributary sediment yields were used to adjust for the change in geologic units that occurs near Cottonwood Creek. Sediment yield for Salmon River from de la Fuente and Hessig (1993) was applied to all tributaries downstream of Cottonwood Creek. This yield was determined by the GSG to underestimate the amount of sediment delivered to the Klamath River by other tributaries downstream. Therefore, this value was not reduced by 20% to account for the suspended load as occurred for the upstream sediment yields. For the reaches upstream of Cottonwood Creek, the yield derived from the tributary delta surveys was multiplied by the watershed area of each tributary to the Klamath River. Sediment input to the J.C Boyle Reach was determined by multiplying the watershed area of each identified tributary by a connectivity factor. Connectivity factors were determined by weighting the sediment yield value from the tributary delta surveys at Scotch, Camp/ Dutch, Jenny, and Spencer Creeks. Scotch, Camp, and Dutch creeks had a yield of 197 tons/mi2/yr, which was considered a high sediment yield for the upper basin based on the extent of their delta deposits. Tributaries with high channel gradients and without depositional zones were considered to be well connected and were assigned a weight of 1.0 (i.e. their sediment yield was assumed to be the same as that measured for Scotch/Camp/Dutch creeks). Tributaries with shallower slopes and/or some depositional zones upstream were classified as medium in connection, and were assigned a weight of 0.5 (i.e. their sediment yields were assumed to be 0.5 of that measured for Scotch/Camp/Dutch creeks). Tributaries with shallow slopes and extensive depositional areas upstream of the mainstem were assigned a weight of 0.25 (i.e. their sediment yields were assumed to be 0.25 of that measured for Scotch/Camp/Dutch creeks). Watersheds that appeared to be disconnected with respect to sediment transport by extensive depositional zones upstream of the confluence were classified as nearly disconnected and assigned a value of 0.01. Connectivity factors for this reach ranged from low (0.25) to high (1.0).